Read Anywhere and on Any Device!

Special Offer | $0.00

Join Today And Start a 30-Day Free Trial and Get Exclusive Member Benefits to Access Millions Books for Free!

Read Anywhere and on Any Device!

  • Download on iOS
  • Download on Android
  • Download on iOS

Higher Recursion Theory (Perspectives in Mathematical Logic)

Gerald E. Sacks
4.9/5 (15927 ratings)
Description:Hyperarithmetic theory is the first step beyond classical recursion theory. It is the primary source of ideas and examples in higher recursion theory. It is also a crossroad for several areas of mathematical logic: in set theory it is an initial segment of Godel's L; in model theory, the least admissible set after; in descriptive set theory, the setting for effective arguments. In this book, hyperarithmetic theory is developed at length and used to lift classical recursion theory from integers to recursive ordinals (metarecursion). Two further liftings are then made, first ordinals ( -recursion) and then to sets (E-recursion). Techniques such as finite and infinite injury, forcing and fine structure and extended and combined Dynamic and syntactical methods are contrasted. Several notions of reducibility and computation are compared. Post's problem is answere affirmatively in all three settings. This long-awaited volume of the -series will be a "Must" for all working in the field.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Higher Recursion Theory (Perspectives in Mathematical Logic). To get started finding Higher Recursion Theory (Perspectives in Mathematical Logic), you are right to find our website which has a comprehensive collection of manuals listed.
Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
Format
PDF, EPUB & Kindle Edition
Publisher
Release
ISBN
3540193057

Higher Recursion Theory (Perspectives in Mathematical Logic)

Gerald E. Sacks
4.4/5 (1290744 ratings)
Description: Hyperarithmetic theory is the first step beyond classical recursion theory. It is the primary source of ideas and examples in higher recursion theory. It is also a crossroad for several areas of mathematical logic: in set theory it is an initial segment of Godel's L; in model theory, the least admissible set after; in descriptive set theory, the setting for effective arguments. In this book, hyperarithmetic theory is developed at length and used to lift classical recursion theory from integers to recursive ordinals (metarecursion). Two further liftings are then made, first ordinals ( -recursion) and then to sets (E-recursion). Techniques such as finite and infinite injury, forcing and fine structure and extended and combined Dynamic and syntactical methods are contrasted. Several notions of reducibility and computation are compared. Post's problem is answere affirmatively in all three settings. This long-awaited volume of the -series will be a "Must" for all working in the field.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Higher Recursion Theory (Perspectives in Mathematical Logic). To get started finding Higher Recursion Theory (Perspectives in Mathematical Logic), you are right to find our website which has a comprehensive collection of manuals listed.
Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
Format
PDF, EPUB & Kindle Edition
Publisher
Release
ISBN
3540193057
loader