Read Anywhere and on Any Device!

Special Offer | $0.00

Join Today And Start a 30-Day Free Trial and Get Exclusive Member Benefits to Access Millions Books for Free!

Read Anywhere and on Any Device!

  • Download on iOS
  • Download on Android
  • Download on iOS

Backpropagation: Theory, Architectures, and Applications

Unknown Author
4.9/5 (28850 ratings)
Description:Composed of three sections, this book presents the most popular training algorithm for neural networks: backpropagation. The first section presents the theory and principles behind backpropagation as seen from different perspectives such as statistics, machine learning, and dynamical systems. The second presents a number of network architectures that may be designed to match the general concepts of Parallel Distributed Processing with backpropagation learning. Finally, the third section shows how these principles can be applied to a number of different fields related to the cognitive sciences, including control, speech recognition, robotics, image processing, and cognitive psychology. The volume is designed to provide both a solid theoretical foundation and a set of examples that show the versatility of the concepts. Useful to experts in the field, it should also be most helpful to students seeking to understand the basic principles of connectionist learning and to engineers wanting to add neural networks in general -- and backpropagation in particular -- to their set of problem-solving methods.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Backpropagation: Theory, Architectures, and Applications. To get started finding Backpropagation: Theory, Architectures, and Applications, you are right to find our website which has a comprehensive collection of manuals listed.
Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
Format
PDF, EPUB & Kindle Edition
Publisher
Release
ISBN
1134775741

Backpropagation: Theory, Architectures, and Applications

Unknown Author
4.4/5 (1290744 ratings)
Description: Composed of three sections, this book presents the most popular training algorithm for neural networks: backpropagation. The first section presents the theory and principles behind backpropagation as seen from different perspectives such as statistics, machine learning, and dynamical systems. The second presents a number of network architectures that may be designed to match the general concepts of Parallel Distributed Processing with backpropagation learning. Finally, the third section shows how these principles can be applied to a number of different fields related to the cognitive sciences, including control, speech recognition, robotics, image processing, and cognitive psychology. The volume is designed to provide both a solid theoretical foundation and a set of examples that show the versatility of the concepts. Useful to experts in the field, it should also be most helpful to students seeking to understand the basic principles of connectionist learning and to engineers wanting to add neural networks in general -- and backpropagation in particular -- to their set of problem-solving methods.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Backpropagation: Theory, Architectures, and Applications. To get started finding Backpropagation: Theory, Architectures, and Applications, you are right to find our website which has a comprehensive collection of manuals listed.
Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
Format
PDF, EPUB & Kindle Edition
Publisher
Release
ISBN
1134775741
loader